Skip to content

DreamLab-AI/agentbox

 
 

Repository files navigation

Agentbox

Minimal Agentic Container for Claude Flow V3

Architecture NixOS License Skills Agents AISP

A lightweight, reproducible container optimized for headless agentic workloads. Built with NixOS Flakes targeting Oracle Cloud ARM free tier.

Why Agentbox?

graph LR
    subgraph "Traditional Container"
        A[100GB+ Image] --> B[GPU Dependencies]
        B --> C[Desktop Environment]
        C --> D[Bloated Runtime]
    end

    subgraph "Agentbox"
        E[<5GB Image] --> F[Headless Optimized]
        F --> G[66 Essential Skills]
        G --> H[610+ Agent Templates]
        H --> I[10x-100x Autonomy]
    end

    D -.->|"Transform"| E

    style E fill:#10b981,color:#fff
    style F fill:#10b981,color:#fff
    style G fill:#10b981,color:#fff
    style H fill:#10b981,color:#fff
    style I fill:#10b981,color:#fff
Loading

Key Features

Feature Description
66 Skills Core development, Claude Flow V3, AgentDB, Flow Nexus, GitHub, AI/Media
610+ Subagents Pre-loaded Claude agent templates (auto-cloned on first run)
AISP 5.1 Platinum Neuro-symbolic AI-to-AI protocol with Hebbian learning
RuVector Standalone Rust vector database (no PostgreSQL)
Guidance Control Plane 10x-100x extended autonomy with enforcement gates
Multi-Architecture ARM64 (Oracle Cloud) + x86_64 support

Architecture

graph TB
    subgraph "Agentbox Container"
        subgraph "Services Layer"
            CF[Claude Flow V3<br/>MCP/Swarm]
            MA[Management API<br/>:9090]
            ZAI[Z.AI Service<br/>:9600]
            RV[RuVector<br/>:9700]
        end

        subgraph "Runtime Layer"
            NODE[Node.js 20 LTS]
            PY[Python 3.12]
            RUST[Rust Toolchain]
            WASM[WASM Tools]
            GCLOUD[Google Cloud SDK]
        end

        subgraph "Intelligence Layer"
            AISP[AISP 5.1 Platinum<br/>Neuro-Symbolic]
            AGENTS[610+ Subagents<br/>Templates]
            GCP[Guidance Control Plane]
        end

        subgraph "Base Layer"
            NIX[NixOS Flakes]
        end
    end

    CF --> NODE
    MA --> NODE
    ZAI --> NODE
    RV --> RUST

    CF --> GCP
    CF --> AISP
    AISP --> AGENTS
    GCP --> AGENTS

    NODE --> NIX
    PY --> NIX
    RUST --> NIX
    WASM --> NIX
    GCLOUD --> NIX

    style CF fill:#8b5cf6,color:#fff
    style RV fill:#f59e0b,color:#fff
    style GCP fill:#ec4899,color:#fff
    style AISP fill:#fcd34d,color:#000
    style AGENTS fill:#fb923c,color:#fff
    style NIX fill:#5277c3,color:#fff
Loading

Quick Start

Prerequisites

  • Nix with flakes enabled
  • Docker (for running built images)

Build

# Clone repository
git clone https://github.com/DreamLab-AI/agentbox.git
cd agentbox

# Build for your architecture
nix build .#runtime      # Headless runtime image
nix build .#full         # Combined full image
nix build .#desktop      # Desktop with VNC

# Load into Docker
docker load < result

Run

# Start container
docker run -d \
  --name agentbox \
  -p 22:22 \
  -p 9090:9090 \
  -p 9700:9700 \
  -v agentbox-workspace:/home/devuser/workspace \
  -v agentbox-agents:/home/devuser/agents \
  agentbox:runtime-aarch64-linux

# Or with docker-compose
docker-compose up -d

Development Shell

# Enter development environment
nix develop

# All tools available: node, python, rust, wasm-pack, gcloud, etc.

Services

graph LR
    subgraph "External Access"
        SSH[SSH :22]
        MGMT[Management :9090]
        RUV[RuVector :9700]
        VNC[VNC :5901]
        CODE[code-server :8080]
    end

    subgraph "Internal Only"
        ZAI[Z.AI :9600]
        MCP[MCP TCP :9500]
        RVMCP[RuVector MCP :9701]
    end

    CLIENT((Client)) --> SSH
    CLIENT --> MGMT
    CLIENT --> RUV
    CLIENT -.->|"SSH Tunnel"| VNC
    CLIENT -.->|"Optional"| CODE

    SSH --> ZAI
    MGMT --> ZAI
    MCP --> ZAI

    style ZAI fill:#f59e0b,color:#fff
    style SSH fill:#10b981,color:#fff
    style MGMT fill:#10b981,color:#fff
    style RUV fill:#10b981,color:#fff
Loading
Port Service Access Description
22 SSH Public Secure shell access
5901 VNC SSH Tunnel Remote desktop (desktop image)
8080 code-server Optional Web IDE
9090 Management API Public Container management
9500 MCP TCP Internal MCP protocol
9600 Z.AI Internal Cost-effective Claude proxy
9700 RuVector Public Vector database API
9701 RuVector MCP Internal MCP integration

AISP 5.1 Platinum Integration

Neuro-symbolic AI-to-AI communication protocol with Hebbian learning.

graph TB
    subgraph "AISP Architecture"
        subgraph "Pocket Structure"
            H[ℋ Header<br/>ID, Signal V, Flags]
            M[ℳ Membrane<br/>Affinity, Confidence, Tags]
            N[𝒩 Nucleus<br/>Definition, IR, WASM]
        end

        subgraph "Binding States"
            B0[0: Crash<br/>Logic Conflict]
            B1[1: Null<br/>Socket Mismatch]
            B2[2: Adapt<br/>Type Transform]
            B3[3: Zero-Cost<br/>Post ⊆ Pre]
        end

        subgraph "Quality Tiers"
            T1[◊⁺⁺ Platinum<br/>δ≥0.75]
            T2[◊⁺ Gold<br/>δ≥0.60]
            T3[◊ Silver<br/>δ≥0.40]
            T4[◊⁻ Bronze<br/>δ≥0.20]
        end
    end

    H --> M --> N
    B0 --> B1 --> B2 --> B3

    style H fill:#fcd34d,color:#000
    style M fill:#fb923c,color:#fff
    style N fill:#f97316,color:#fff
    style B3 fill:#10b981,color:#fff
    style T1 fill:#fcd34d,color:#000
Loading

Usage

# Validate AISP document
aisp validate document.md

# Check binding compatibility
aisp binding agent-a agent-b

# Initialize pocket store
aisp init

# Benchmark performance
aisp benchmark

Parameters

Parameter Value Description
α (alpha) 0.1 Hebbian confidence increase rate
β (beta) 0.05 Hebbian confidence decrease rate
τ_v 0.7 Affinity threshold for skip
V_H 768 High-level semantic dimensions
V_L 512 Low-level topological dimensions
V_S 256 Safety constraint dimensions

610+ Claude Subagents

Pre-loaded agent templates auto-cloned from ChrisRoyse/610ClaudeSubagents.

# List available agents
agent-list

# Load specific agent
agent-load doc-planner

# View agent count
ls $AGENTS_DIR/*.md | wc -l

Key Agents

Agent Purpose
doc-planner Documentation strategy
microtask-breakdown Task decomposition
github-pr-manager PR workflow automation
tdd-london-swarm Test-driven development
api-designer API specification
security-auditor Security analysis

RuVector Vector Database

Standalone Rust-native vector database — NO PostgreSQL required.

graph TB
    subgraph "RuVector Architecture"
        API[REST API :9700]
        MCP_S[MCP Server :9701]

        subgraph "Core Engine"
            HNSW[HNSW Index<br/>150x-12,500x faster]
            GNN[GNN Layers<br/>GCN, GAT, GIN]
            LEARN[Self-Learning<br/>ReasoningBank]
        end

        subgraph "Storage"
            REDB[(redb<br/>Embedded)]
        end
    end

    API --> HNSW
    API --> GNN
    MCP_S --> HNSW

    HNSW --> REDB
    GNN --> REDB
    LEARN --> REDB

    style HNSW fill:#f59e0b,color:#fff
    style REDB fill:#6366f1,color:#fff
Loading

Features

  • HNSW Indexing — 150x-12,500x faster similarity search
  • GNN Layers — GCN, GraphSAGE, GAT, GIN operations
  • Self-Learning — ReasoningBank pattern recognition
  • 384-dim Embeddings — all-MiniLM-L6-v2 compatible
  • MCP Integration — Native Claude Code/Flow support

Usage

# Start RuVector server
npx ruvector serve --port 9700 --data-dir /var/lib/ruvector

# Start MCP server for Claude integration
npx ruvector mcp --port 9701

# CLI operations
npx ruvector --help

Guidance Control Plane

Governance backbone enabling 10x-100x extended autonomy.

flowchart TB
    subgraph "Input"
        CLAUDE_MD[CLAUDE.md]
        TASK[Task Intent]
    end

    subgraph "Guidance Control Plane"
        direction TB
        COMPILE[Compile<br/>Constitution + Shards]
        RETRIEVE[Retrieve<br/>Intent Classification]

        subgraph "Enforcement"
            G1[Destructive Ops]
            G2[Tool Allowlist]
            G3[Diff Size]
            G4[Secrets Detection]
        end

        PROOF[Proof Chain<br/>Cryptographic Envelopes]
        TRUST[Trust System<br/>Tier Management]
        ADVERSARIAL[Adversarial Defense<br/>Injection Detection]
    end

    subgraph "Output"
        DECISION{Gate<br/>Decision}
        ALLOW[Allow]
        BLOCK[Block + Log]
    end

    CLAUDE_MD --> COMPILE
    TASK --> RETRIEVE
    COMPILE --> RETRIEVE
    RETRIEVE --> G1 & G2 & G3 & G4
    G1 & G2 & G3 & G4 --> DECISION
    DECISION -->|Pass| ALLOW
    DECISION -->|Fail| BLOCK
    ALLOW --> PROOF
    BLOCK --> PROOF
    PROOF --> TRUST
    TRUST --> ADVERSARIAL

    style COMPILE fill:#8b5cf6,color:#fff
    style PROOF fill:#ec4899,color:#fff
    style TRUST fill:#10b981,color:#fff
Loading

Impact

Metric Without With Control Plane Improvement
Autonomy Duration Minutes Days to Weeks 10x-100x
Destructive Actions Common Rare 50-90% reduction
Memory Corruption Frequent Blocked 70-90% reduction
Prompt Injection Vulnerable Detected 80-95% reduction

Skills (66)

mindmap
  root((Agentbox<br/>66 Skills))
    Core Development
      build-with-quality v3.4.0
      verification-quality
      rust-development
      guidance-control-plane
      pair-programming
    Claude Flow V3
      v3-core-implementation
      v3-ddd-architecture
      v3-memory-unification
      v3-performance-optimization
      v3-security-overhaul
      v3-swarm-coordination
      v3-cli-modernization
      v3-mcp-optimization
      v3-integration-deep
    AgentDB & Memory
      agentdb-advanced
      agentdb-learning
      agentdb-memory-patterns
      agentdb-vector-search
      reasoningbank-agentdb
      reasoningbank-intelligence
    Flow Nexus
      flow-nexus-neural
      flow-nexus-platform
      flow-nexus-swarm
    AI & Media
      blender
      comfyui
      cuda
      gemini-url-context
      deepseek-reasoning
      agentic-qe
    Swarm Orchestration
      hive-mind-advanced
      swarm-advanced
      swarm-orchestration
      sparc-methodology
    GitHub Integration
      github-code-review
      github-multi-repo
      github-project-management
      github-release-management
      github-workflow-automation
    Browser & Automation
      playwright
      chrome-devtools
      claude-flow-browser
      web-summary
      host-webserver-debug
      console-buddy
Loading

Skill Categories

Category Count Key Skills
Core Development 7 build-with-quality, rust-development, guidance-control-plane
Claude Flow V3 9 v3-core-implementation, v3-swarm-coordination
AgentDB & Memory 7 agentdb-advanced, reasoningbank-intelligence
Flow Nexus 3 flow-nexus-neural, flow-nexus-swarm
AI & Media 9 blender, comfyui, cuda, gemini-url-context
Swarm 4 hive-mind-advanced, sparc-methodology
GitHub 5 github-code-review, github-workflow-automation
Browser & Automation 12 playwright, chrome-devtools, web-summary
Other 10 docker-manager, ffmpeg-processing, jupyter-notebooks

Turbo Flow Aliases (120+)

Quick command access via turbo-flow-aliases.sh:

# Source aliases
source /home/devuser/.config/turbo-flow-aliases.sh

# Or they're auto-loaded in zsh

Essential Aliases

Alias Command Description
cf npx @claude-flow/cli@latest Claude Flow CLI
cf-swarm cf swarm Swarm orchestration
cf-hive cf hive-mind spawn Hive-mind agents
cf-doctor cf doctor --fix System diagnostics
af-coder agentic-flow --agent coder Agentic Flow coder
aqe agentic-qe Testing framework
aj agentic-jujutsu Quantum-resistant git
gf-swarm gemini-flow swarm Gemini 66-agent swarm
turbo-help (function) Quick reference
agent-load (function) Load subagent template

Helper Functions

# Initialize workspace
turbo-init

# Load agent template
agent-load doc-planner

# List all agents
agent-list

# Quick reference
turbo-help

Swarm Orchestration

sequenceDiagram
    participant User
    participant Claude as Claude Code
    participant Swarm as Swarm Coordinator
    participant Agents as Mesh Agents
    participant Memory as RuVector Memory

    User->>Claude: Complex Task
    Claude->>Swarm: Initialize Mesh Topology

    par Parallel Agent Spawning
        Swarm->>Agents: Spawn Researcher
        Swarm->>Agents: Spawn Coder
        Swarm->>Agents: Spawn Tester
        Swarm->>Agents: Spawn Reviewer
    end

    loop Task Execution
        Agents->>Memory: Store Findings
        Agents->>Agents: Peer Coordination
        Memory->>Agents: Retrieve Context
    end

    Agents->>Swarm: Results
    Swarm->>Claude: Aggregated Output
    Claude->>User: Complete Solution
Loading

Topologies

graph TB
    subgraph "Mesh (Default)"
        M1((Agent)) <--> M2((Agent))
        M2 <--> M3((Agent))
        M3 <--> M1
        M1 <--> M4((Agent))
        M4 <--> M2
    end

    subgraph "Hierarchical"
        H1((Queen)) --> H2((Worker))
        H1 --> H3((Worker))
        H1 --> H4((Specialist))
        H2 --> H5((Scout))
    end

    subgraph "Star"
        S1((Hub)) --> S2((Agent))
        S1 --> S3((Agent))
        S1 --> S4((Agent))
        S1 --> S5((Agent))
    end
Loading

Runtime Packages

Installed via npm on first run or on-demand via npx:

Package Version Purpose
@claude-flow/cli latest V3 swarm orchestration
agent-browser latest AI-optimized browser automation
@claude-flow/browser latest Browser MCP integration
agentic-flow latest Multi-agent flow orchestration
agentic-qe latest Testing framework (51 agents)
agentic-jujutsu latest Quantum-resistant git
ruvector latest Standalone vector database
agentdb latest Agent memory database
gemini-flow latest Google Gemini integration
claude-usage-cli latest Usage tracking

Target Platform

Optimized for Oracle Cloud Free Tier ARM Ampere A1:

Resource Allocation
CPU 4 ARM cores
RAM 24 GB
Storage 200 GB
Cost Free

VNC Remote Desktop

The desktop image includes minimal VNC via SSH tunnel:

# Build desktop image
nix build .#desktop

# Run container
docker run -d --name agentbox -p 22:22 agentbox:desktop-aarch64-linux

# Start VNC services
docker exec agentbox supervisorctl start vnc:*

# Create SSH tunnel (from local machine)
ssh -L 5901:localhost:5901 devuser@<host>

# Connect VNC client to localhost:5901

Components: Xvfb + x11vnc + openbox (~150MB overhead)

Not Included

Intentionally excluded for minimal footprint:

Excluded Reason Alternative
GPU/CUDA Runtime No NVIDIA dependencies Use cuda skill docs only
Desktop Environment Headless only VNC via SSH tunnel
ComfyUI Runtime Heavy dependencies External container, use comfyui skill
Blender Runtime GUI application External container, use blender skill
Full LaTeX Large footprint Use external service
PyTorch GPU CUDA dependencies CPU-only inference

Directory Structure

agentbox/
├── flake.nix              # NixOS container definitions
├── CLAUDE.md              # Project configuration
├── config/
│   ├── supervisord.conf   # Service management
│   ├── turbo-flow-aliases.sh  # 120+ aliases
│   └── claude-flow-config.json
├── skills/                # 66 essential skills
│   ├── build-with-quality/
│   ├── claude-flow-browser/
│   ├── flow-nexus-*/
│   ├── gemini-url-context/
│   └── ...
├── aisp/                  # AISP 5.1 Platinum
│   ├── index.js           # Core implementation
│   ├── cli.js             # CLI interface
│   └── benchmark.js       # Performance testing
├── mcp/                   # MCP infrastructure
├── management-api/        # Express.js API
├── claude-zai/            # Z.AI proxy service
├── https-bridge/          # HTTPS bridging
└── docs/
    ├── guides/            # How-to guides
    ├── adr/               # Architecture decisions
    └── reference/         # API reference

Documentation

Document Description
CLAUDE.md Project configuration
docs/guides/quick-start.md Getting started guide
docs/adr/ADR-001-nixos-flakes.md NixOS architecture
docs/adr/ADR-002-ruvector-standalone.md RuVector design
docs/adr/ADR-003-guidance-control-plane.md Governance design

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make changes following ADR guidelines
  4. Run nix build to verify
  5. Submit a pull request

License

MIT License — See LICENSE for details.


Built with NixOS Flakes for reproducibility
Designed for Oracle Cloud ARM free tier
Powered by Claude Flow V3 + AISP 5.1 Platinum

66 Skills • 610+ Subagents • 120+ Aliases

About

NIX based ARM agent container

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • TypeScript 36.1%
  • JavaScript 30.0%
  • Python 23.5%
  • Shell 8.5%
  • Nix 1.2%
  • Rust 0.6%
  • Dockerfile 0.1%